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We are concerned here with the problems encountered in the derivation of 
nonlinear t ransport  equations f rom a correspondingly nonlinear Langevin 
equation. A dynamical  coupling between the t ime-dependent averages and 
the fluctuations must  be accounted for by a procedure which leads to a 
renormalization of  the nonlinear t ransport  equation. Generalizing the 
familiar phenomenological  approach to Brownian motion to nonlinear 
dynamics, we illustrate how the problem arises and show how the fluctuation 
renormalization can be obtained exactly by a formal procedure or approxi- 
mately by more tractable methods.  

KEY W O R D S :  Nonlinear transport equation; statistical fluctuations; 
fluctuation renormalization. 

1. INTRODUCTION 
Many problems in nonequilibrium statistical mechanics lead to a nonlinear 
transport theory. Nonlinearity adds a new complication to the derivation of 
the statistical transport theory due to the dynamical coupling between en- 
semble averaged properties and the fluctuations of these priorities in the 
ensemble. This problem will be analyzed here. We illustrate how the problem 
arises in a simple phenomenological theory and discuss a formal decoupling 
scheme together with several modifications which under appropriate con- 
ditions would allow the derivation of nonlinear fluctuation-renormalized 
transport equations. 
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The approach to nonequilibrium statistical mechanics that we use here 
has evolved out of  traditional Brownian motion theory, (1'2~ which in recent 
years has been obtained on a microscopic first principle basis by Zwanzig ~a~ 
and Mori ~4~ using projection operator techniques and applied in the nonlinear 
regime by Kawasaki5 ~) On the basis of Mori's microscopic derivation, which 
yielded a non-Markovian linear Langevin equation, Kubo (6~ extended the 
phenomenological Brownian motion theory to the non-Markovian regime. 
Here we apply the phenomenological theory to a general class of nonlinear, 
essentially Markovian problems and focus on the role played by the fluctua- 
tions. The need for a fluctuation renormalization has been pointed out 
previously by way of a model calculation. (7~ A more general analysis of the 
problem is presented here. 

It will be evident that the problem of fluctuation effects in nonlinear 
statistical theories is a very general one appearing in many different forms 
depending on the specific problem. We shall not attempt to review here the 
many specific applications in which the same problem, in a broad sense, has 
been encountered and somehow overcome or neglected. Rather we shall save 
some comments about relevant previous work to the end of the paper, hoping 
by then to have given the reader a clear conception of the problem. This work 
has been motivated by the fact that while systematic and very general methods 
have now been developed which yield Langevin or Fokker-Planck equations 
for nonlinear processes, ~8,5,~ a systematic treatment of the effects of fluctua- 
tions on nonlinear transport equations has been lacking. 

The example of a nonlinear oscillator in a heat bath is studied briefly in 
Section 2 in order to expose the main content of the phenomenological 
transport theory used in the following. We generalize the theory and proceed 
to discuss in Section 3 the cumulant expansion for the fluctuations and a 
formal iteration procedure which when convergent leads to the desired 
fully fluctuation-renormalized transport equations. Approximate renormal- 
ization methods that may be practically useful are discussed in Section 4, 
and we conclude with a brief discussion of the need for nonlinear theories and 
fluctuation renormalization. 

2. N O N L I N E A R  B R O W N I A N  M O T I O N  

In order to illustrate the content of the phenomenological transport 
theory to be used in the following and the problem posed by nonlinearity, 
we consider here the motion of a Duffing oscillator in a heat bath 3 which 
may be taken to be a dilute fluid. The motion of the oscillator in the absence 
of the heat bath is given by the equations 

(O /8 t ) x ( t )  ---- v( t ) ,  ( 8 /S t ) v ( t )  = - k x ( t )  - x3( t )  (1) 

3 A linearized transport equation for the Duffing oscillator in a heat bath has been 
studied in Ref. 9. 
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The point of the exercise is to understand the effect of the fluid on the 
motion of the oscillator. Clearly it contributes a force of interaction so that 
the acceleration becomes 

(a/at)v(t)  = - k x ( t )  - xa(t) + FH(t) (2) 

Rigorous classical mechanics would direct us to obtain F~z(t) from the 
equations of motion of the whole system but we shall be content with a 
completely phenomenological treatment. Rigorous derivations verifying the 
properties we shall rely upon below for a special class of systems have been 
discussed by Ford et al. ~1~ and by Zwanzig/11~ Here we merely assume that 
F~(t )  consists of a frictional part proportional to the velocity of the oscillator 
and a remainder that fluctuates in a random manner. Thus the motion of the 
oscillator is given by 

a x( t )  = v(t), a v(t) = - k x ( t )  - x3(t)  - ~v(t) + F ( t )  (3) 

These are the Langevin equations of our Brownian motion problem, and 
they will form the starting point for our discussion. 

The following points concerning the content of the Langevin equations 
should be noted. The form of Eq. (3) represents a simplification in that the 
dissipative force of the heat bath is assumed instantaneous rather than delayed 
in time, as is generally the case. The many-body character of the dynamics is 
now hidden in the fluctuating force F(t ) ,  which is dependent on the positions 
and velocities of the fluid particles. Since the initial conditions for the fluid 
can be experimentally controlled only in a very crude sense such as the speci- 
fication of a temperature, we associate with the Langevin equation an 
ensemble of initial conditions for the whole system. This ensemble may be 
taken to represent a sequence of repeated experiments, and it is a requirement 
of the theory that the ensemble average of the fluctuating force vanish, 

~ F ( t ) )  = 0 (4) 

The Langevin equation describes the motion of the Duffing oscillator 
as it would appear in a single experiment. The trajectory depends through 
F ( t )  on the initial state of both oscillator and fluid. We are, however, usually 
interested only in some systematic aspects of the motion. In particular, it is 
often sufficient to obtain the motion of the averaged properties as observed 
in the ensemble of experiments referred to above. Thus we take the ensemble 
average of the Langevin equations and get 

0 0 
a-t <x>~ = <v>,, Vt  <v>~ = - k < x > ~  - <x3>~ - ~<v)~ (5) 

In the absence of the cubic term, that is, if our Langevin equations had been 
linear, the above equations would have been closed in the first moments ( x ) t  
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and (v)t .  Such equations of motion, closed in the first moments of the 
properties studied, are called transport equations and their derivation is a 
significant part of nonequilibrium dynamics and our concern in this paper. 
Our problem is that in the presence of the cubic term and dispersion in the 
ensemble we have 

(x3) t  ~ ( x ) t  3 (6) 

and the equations of motion (5) are not closed in the first moments. Only if 
the fluctuations in the ensemble from one experiment to the next can be 
neglected so that (6) can be made an identity do we obtain a bare nonlinear 
transport equation 

(8/et)(v)t  = - k ( x ) t  - ( x ) t  3 - ~(v)t (7) 

In the general case we must seek to correct the bare equation (7) for the 
effects of the fluctuations entering in the form of ( X 3 ) t  - -  ( X ) t  a to obtain a 
fluctuation-renormalized nonlinear transport equation. This will require that 
we learn something about the time development of the fluctuations in the 
ensemble. Thus we turn now to consider the probability density f ( t ;  x, v) 
describing the instantaneous distribution of oscillators in the ensemble 
over position and velocity. Note that this function contains the time de- 
velopment of the average of any function of the oscillator coordinates A(x, v) 
through the relation 

<A(x, v)>, = f f dx dv A(x, v)f(t;  x, v) (8) 

It is clear then that obtaining an expression for f ( t ;  x, v) constitutes a 
complete solution for our problem and, in particular, f ( t ;  x, v) contains 
information about the fluctuations in the ensemble as required to obtain a 
correction to (7). Given that the fluctuating force F(t)  in addition to (4) 
satisfies the relation 

(F( t )F( t ' ) )  = 2a 3(t - t') (9) 

and is a Gaussian random process, the equation of motion satisfied by 
f ( t ;  x, v) can be found to be ~1,2~ 

x,  v) = - V Ux + ( k x  + x ) -~  + ~ ~ v + ,~ -g-~v ~ f ( t ;  x ,  v) 

(10) 

This is the well-known Fokker-Planck for our Brownian motion problem. 
Finally, we shall point out a useful connection between equilibrium and 

nonequilibrium theory. Let us, for example, assume that after the excess 
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velocity of the oscillator has been damped out it settles down into an equi- 
librium motion such that the oscillator density becomes 

f~q(x, v) = C exp[ - � 89  2 + k x  2 + �89 (11) 

as determined by Gibbs' canonical ensemble. We must then demand that this 
equilibrium density be a stationary solution of the Fokker-Planck equation 
(10). Substituting (1 l) into (10), we then immediately obtain the well-known 
fluctuation-dissipation theorem relating the friction coefficient to the corre- 
lations in the fluctuating force, 

= aMfi = M(kBT)  -1 dt' (F ( t ) e ( t  + t '))  (12) 

Thus we have reduced to one the number of parameters occurring in the 
phenomenological Fokker-Planck equation. 

As has long been known, Brownian motion theory can be applied to a 
wide range of problems in which some relevant properties collectively denoted 
by the vector a couple to a heat bath of irrelevant properties of the system. 
Retaining the Markovian assumption, the generalized Langevin equation 
would then be 

(e/~t)a(t) -- h(a(0)  + ~(a(t)) + F(t) (13) 

where the vector notation summarizes a system of equations. The first term 
on the right represents nondissipative streaming, while the second term 
contains the systematic, generally dissipative effects of the heat bath, and 
both terms may be nonlinear. The last term is the fluctuating force due to the 
nonsystematic effects of the heat bath, and it is assumed to satisfy 

(F(t)ff(t')) = 2c~ ~(t - t') (14) 

Here F is a column matrix, F its transpose, and c~ is a constant square matrix. 
The Fokker-Planck equation can be obtained by a standard method and 

we get 

~ f ( t ;  a) = - .[h(a) + n(a)]f(t; a) + -~a.a - ~ f ( t ;  a) (15) 

Self-consistency relations for the parameters of the theory can again be 
obtained by demanding that the equilibrium density feq(a) be a stationary 
solution of (15). However, they will generally be more complicated than the 
fluctuation-dissipation theorem (12). 

Taking the ensemble average of the Langevin equation (13), we obtain 

(O/~t)(a}t = (h(a)}t + (~q(a)}t (16) 

which becomes a bare transport equation 

(~3/cot)(a}t = h((a}~) + "q((a}O (17) 
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only if the fluctuations contained in higher moments can be neglected. 
However, there are interesting problems such as critical dynamics where the 
fluctuations can be expected to have important effects, and we shall seek in 
the following the proper corrections to the bare transport equation. 

3. F L U C T U A T I O N  R E N O R M A L I Z A T I O N  

The fluctuations that we must now consider are conveniently described 
by the cumulant averages well known in probability theory. Kubo ~12) has 
pointed out their usefulness in statistical physics. Each higher-order moment 
can be expanded in terms of cumulant averages indicated here by the sub- 
index c 

(all  "'" az~) = (all  "'" a z r )C  "Jr 2 (azl "'" az~_lal~+l "'" alr)c(al,)c 
7;=1 

+ .. .  + ( a , 1 ) c  ..- ( a t r ) c  ( 1 8 )  

There is one term on the right of (18) for each partition of the natural num- 
bers 1,..., r into nonoverlapping sets. The first-order cumulant average 
(%)~ is identical to the first moment ( % )  but the higher-order cumulant 
average (at~ .-. at~)~ represents only the correlations among all the variables 
at1,..., a~. If these variables can be divided up into two independent sub- 
groups, then the cumulant average will vanish. 

A systematic definition of the cumulant average is given in terms of the 
characteristic function for the random vector a defined by 

r = (exp(i~.a))  (19) 

The characteristic function generates the moments by the relation 

(at~ "- at,) = [ ( -  i ) ' (0 '1~r ~:~,)r 01 (20) 

and the cumulant averages by 

(azl ... az,)c = [ ( -  i)~(8~lO~z~ ".. ~ t , )  In r = 0 (21) 

Expanding In r in terms of moments using (19), one then finds from (21) 
an expansion of the cumulant average in terms of moments. 

Let us now return to the ensemble average of the Langevin equation 
(16). Assuming that the components of h(a) and ~q(a) are well-behaved 
functions which can be expanded in multidimensional Taylor series, we use 
these expansions together with the cumulant expansion (18) for the moments 
to rewrite (16) in the form 

(O/~t)(a)t  = h((a)t) + ~q((a)t) + ~ ( ( a ) t ,  (aa)~,t, (aaa)~,t .-.) (22) 
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The last term summarizes the corrections to the bare transport equation, and 
we note that it vanishes when the fluctuations represented by all cumulant 
averages of order two and higher vanish. We shall not be concerned with the 
exact form of the functions summarized in ~ The whole term is a sum of 
products of cumulant averages, and the important point is that it exposes the 
dependence on the instantaneous first moments and upon the fluctuations. 

Our task then is to replace the dependence on unknown instantaneous 
fluctuations by further dependence on first moments or on other quantities 
that can be considered known. To do so, we must produce solutions of proper 
form for the higher-order cumulants. Since the cumulant average 
<% "'" %)c,t can be expanded as a sum of products of moments of the same 
or lower order, its equation of motion can be obtained from those of the 
moments. Note now that an equation of motion for the average of the 
function B(a) can be obtained from the Fokker-Planck equation in the 
following manner: 

f da B(a)(8/Ot)f(t; a) (~/St)<B(a)>t 

f da B(a)~f(t; a) = f da [~+B(a)]f(t; a) (23) 

Here ~ is the Fokker-Planck operator defined by (15) as 

= -~--~-[h(a) + lq(a)] + ~-a.C~a (24a) 

and 9 + is its adjoint, which can be obtained by partial integration i f f ( t ;  a) 
vanishes at the boundaries 

�9 (24b) ,~+ = [h(a) + ~l(a)l.~a + ~a.C~aa 

Replacing B(a) by the product a~ -.. a~T, we obtain from (23) the equation 
of  motion for <at~ ... a~,>t, and the equations of motion for the cumulant 
averages follow in a straightforward manner. We shall adopt a notation 
which suppresses all of the details and focuses on the basic principle of the 
formal manipulations we now proceed to discuss. Let ,~e'(t) be an infinite- 
dimensional vector which has as components all of the time-dependent 
cumulant averages, 

~l...zr(t) = <azl -,. az~>~,~ (25) 

We can summarize all of  the equations of motion of the cumulants in the 
vector notation 

(O/Ot),_~(t) = M(,-~'(t)) (26) 
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Corresponding to our separation of all information in our ensemble into 
first moments and fluctuations, we separate ,-~ff(t) into 

~ ( t )  = ~ l ( t )  + ,.,r 

where ,-~l(t) lies in the subspace corresponding to first moments and ,.~2(t) 
in the subspace of higher-order cumulants or fluctuations. That is, 

~,21 ..... ~(t) = 0 for n > 1; ~ ,z l ( t )  = 0 

We emphasize that no fundamental importance is attached to the introduc- 
tion of this vector space of cumulants. It merely allows us to write the equa- 
tions which follow in a compact form. In the same way the equation of 
motion (26) splits into 

(8/St).-.qtl(t) = M ~ ( ~ ( t )  + ,-~2(t)) (27a) 

(8/8t)d2(t) = M2(o41(t) + d2( t ) )  (27b) 

Note now that if the right-hand side of (27a) did not contain any de- 
pendence on ,~2(t), as in the linear theory, then this relation summarizes the 
transport equations we are seeking. In the nonlinear theory there is such a 
dependence on ~2(t) .  The bare transport equations follow by setting ,.d2(t ) 
equal to zero, 

( 8 / S t ) ~ ( t )  ~ M~(,~l(t)) (28) 

When the fluctuations cannot be neglected we must solve (27b) to obtain a 
relation for d2 ( t )  in terms of first moments and initial values. Substituting 
this relation for ,-~2(t) into (27a), we would then obtain our fluctuation- 
renormalized transport equation. How to obtain such a solution for ~2( t )  
is the problem. 

Let us first integrate (27b) over time to obtain 

~2(t )  = ,~12(0) + ds M2(Jr + o42(s)) (29) 

We note now that for a physically well-behaved Hamiltonian the dynamics of 
variables such as the cumulants above will be analytic in time (as they must 
for their equations of motion to make sense). Thus we can find an exact 
solution for d2 ( t )  in the form of a Taylor series expansion in time. The co- 
efficients in that expansion will be time derivatives of the respective compo- 
nents of ~2( t )  and they can be obtained as functions of the initial conditions 
d ( 0 )  by repeated differentiation of (29) with the use of (27a) and (27b) to 
reduce the dependence on derivatives. We would obtain 

or = ~ C~.,.(d(0))d/n!)t ~ (30) 
3 = 0  
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where, for example, 

C2,0 = ,-~2(0), C2,1 = M2(dl (0)  + d2(0))  (31) 

and so on. 
However, the solution (30) does not have the desired form. It would 

merely introduce further dependence on initial conditions in the renormalized 
transport equations while we are seeking a solution which would introduce 
further dependence on the time-dependent first moments themselves and thus 
renormalize the transport coefficients. Such a solution can be obtained by a 
successive approximation procedure in which the self-consistency relation 
(29) is used recursively to generate higher-order approximations to ~r 
The zeroth-order approximation is taken to be the initial value 

o~~ = d2(O) (32) 

and the higher-order approximations are obtained from the recursion relation 

f2 d(2h)(t) = d2(O) + ds M2(d~(s ) + dP- l ' ( s ) )  (33) 

It should be noted that this method is a straightforward generalization of 
Picard's method of successive approximations (a3) as applied to nonlinear 
integral equations. Given that the functional in the integrand of (33) satisfies 
some physically reasonable conditions (see, for example, Ref. 13, p. 415), we 
can expect the successive approximations to converge to the unique solution 

lim d(2")(t) = ,.~r176 = ~2( t )  (34) 
n ~ c ~  

Clearly the convergence properties will be most favorable in the limit of 
short time but we can reasonably expect the convergence to be faster than that 
characterizing the n first terms of the Taylor series expansion (30) as n goes to 
infinity. More importantly, the successive approximation method does retain 
the explicit dependence of d2(t)  on first moments at earlier times. That is, 
upon substitution of d(2'~)(t) into (27a), we would find the fluctuation- 
renormalized transport equation to contain memory effects. 

4. L O W - O R D E R  R E N O R M A L I Z A T I O N  M E T H O D S  

The successive approximation method described above seems well suited 
to the basic theoretical task of proving the existence of an exact fluctuation 
renormalization of the proper form for the bare nonlinear transport equa- 
tions. However, it may not, in its present form, be very well suited to generate 
practically useful approximate fluctuation renormalization. It should be 
noted that the series t~d(~ t~2  ~ z~ = 0 will share many of the problems of a 
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straightforward Taylor series expansion in time. That is, the rate of conver- 
gence can be expected to decrease rapidly with time and, moreover, for 
finite n the approximation d ~ ( t )  will show nonphysical divergencies for 
long times. 

From a practical point of view it is immediately clear that ~xact fluctua- 
tion renormalization will be beyond reach in nontrivial cases, and we must 
find ways of accounting approximately for the effects of the fluctuations by 
methods that are tractable either analytically or numerically. Since we are 
normally particularly interested in the long-time limit in which we expect to 
find decay to stationary equilibrium values of the moments and cumulants, 
the long-time inadequacies of ,-~"~(t) as given above are particularly un- 
fortunate. Thus we shall now discuss some approximations that may eliminate 
the long-time difficulties and prove practically useful. 

Approximation 1. Our concern with the long-time limit of the time 
dependence suggests that we should consider replacing the fluctuations as they 
enter (27a) by their long-time limit which we presume to be the equilibrium 
values, i.e., 

~2(t) ~ ~2,oq (35) 
(�9 = M l ( d l ( t )  + ,-~'z,eq) (36) 

This approximation would be reasonable in cases when the initial conditions 
represent a small deviation from equilibrium conditions. Moreover, it would 
imply that as first moments and cumulants decay toward their equilibrium 
values only the coupling of the first moments to the static part of the fluctua- 
tions need be considered. Nevertheless, the bare transport equation may be 
significantly renormalized in this way. In the case of the Duffing oscillator 
discussed in Section 2, we would get 

(x*)t  = (Xa)c,t + 3(xZ)o,t(x)t  + ( x ) t  z "~ 3(xZ)c,ea(x)t + ( x ) ,  3 

since (xa)c,eq vanishes and inserting into (5) 

0 
( x ) t  = ( v ) t ,  ~ ( v ) ,  = - ( k  + 3(x~)~.o.)<x) ,  - ~ ( v h  - ( x ) ?  

(37) 

where we see that one of the linear transport coefficients has been renormal- 
ized by the fluctuations. 

Approximation 2. In the case that the equilibrium approximation for the 
fluctuations is too crude, one may try a local equilibrium approximation. 
That is, the time dependence of the fluctuations is assumed to be rapid com- 
pared to that of the first moments so that the statistical ensemble is always 
close to local equilibrium as given by 

f . ,q(P;  , ~ ( t ) )  = C exp[- /gH(P)  + A(P)-y(t)] (38) 
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where y(t) is determined so that the first moments become just ~l( t ) .  Here 
is (kBT) -1 and F is the coordinate of the underlying phase space in which 

the properties we are studying take the form of phase space functions, 
{,.~'~(P)}, in classical theory. The local equilibrium approximation for the 
fluctuations ,-~'2,Z.eq(O~'l(t)) would then be calculated directly from the density 
f.ea in (38). Although less convenient mathematically, this approximation 
has many advantages over the equilibrium approximation. We note that in 
nonequilibrium statistical mechanics it is customary to choose the initial 
conditions to be obtained from just such a local equilibrium ensemble. If 
this is done, then ,-~2,z.eq(t) will be exact both in the long- and in the short- 
time limits. Moreover, the local equilibrium approximation need not neces- 
sarily be limited to describing the time development of the first moments from 
initial conditions that correspond to a small deviation from equilibrium. 
We note also that the local equilibrium approximation makes contact with 
thermodynamic reasoning in that it assigns the fluctuations a value that would 
maximize the entropy for given values of the first moments. 

The two approximations discussed above either neglect or make a strong 
simplifying assumption about the time development of the fluctuations. 
When these assumptions fail the problem becomes, of course, much more 
difficult since we would then have to obtain and, in some adequate approxi- 
mation, solve the equations of motion of the cumulants (27b). It may be 
possible to truncate the infinite set of coupled nonlinear equations by ne- 
glecting the time development of cumulants of order higher than some small 
integer N. However, there appears to be little a priori support for such a 
procedure so the effect of the truncation would have to be considered in each 
individual case. 

Approximation 3. The full dynamical coupling between first moments and 
fluctuations which is introduced recursively in the successive approximation 
procedure above may perhaps be introduced in a more practical manner by a 
modification of this procedure. Note that the zeroth-order approximation 
�9 ~~ can be generalized in the hope of obtaining more rapid convergence 
and eliminating the difficulties at long times. Clearly the rate of convergence 
is directly dependent on the extent to which the zeroth-order approximation 
differs from the correct functional form or ). One may, for example, obtain 
corrections to the local equilibrium approximation discussed above by 
substituting 

~r176 = ~r (39) 

in the successive approximation method and generating the low-order 
approximations according to (33). 
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Approximation 4. Another possibility is the application of partial 
resummation techniques. One model calculation employing this technique 
as justified by the assumption of weakly nonlinear dynamics has been pre- 
viously presented37~ It can be summarized as follows. The equation of motion 
for the cumulants (27b) is rewritten by collecting the linear effects in a separate 
term to obtain (K is a square matrix) 

( a / a t ) ~ d t )  = K~C2(t) + hM2'(,-~cl(t) + ,-~/2(t)) (40) 

where the nonlinear coupling parameter h has been inserted to keep track of 
the order to which the nonlinear effects will appear. The equation can be 
partially solved to yield 

ag2(t ) = eKtag2(O) + h ds e(t-S)KM2'(ogl(s ) + or (41) 

We can now apply the method of successive approximation to Eq. (41), which 
is a partially resummed modification of the Eq. (29), using 

�9 .~t(2~ = eZt,.~2(O ) (42) 

and higher-order approximations as given by Eq. (33). Tile advantage gained 
by the resummation lies in the fact that ~ ( t )  can now be seen to be correct 
to order 2~" if the h expansion exists as assumed. The hope is, of course, that 
the convergence will now be rapid since all of the linear dynamical effects are 
already included in o~~ and the nonlinear effects are assumed to be small. 
Another important point is that the linear propagator exp Kt may now con- 
tain dissipative effects that would lead to exponential decay for the linear 
problem and which can eliminate the long-time problems that arise in the 
same method as applied to the original equation. 

Since the nonlinearities are responsible for the coupling between the 
first moments and the fluctuations, the above method would only yield 
renormalization effects that were themselves small. However, the same 
general method may be based instead on the assumption of small deviations 
from equilibrium. If we assume that Eq. (27b) has been rewritten so that it 
gives the time development of the deviations of the cumulants from their 
equilibrium values, then the partial resummation can be carried out as 
follows. First, we separate out the linear dynamical effects to get 

( ~ / O t ) ~ d t )  = K ~ 2 ( t )  + L d l ( t )  + M's  ,-~dt))  (43) 

Here L will be not a square but a rectangular matrix since the vector space of 
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the first moments will be of lower dimensionality. This equation can again 
be integrated to yield 

d 2 ( t )  = eKt~2(O) + ds e<t-S)KLdl(s) 

~ t  1 

+ | ds e K(t- s>M;(,-dl(s), ,~2(s)) (44) 
J 0 

We can now apply the successive approximation method to Eq. (44) using 

f2 d~~ = erCtJd2(O) + ds e~:<t-S)Ld~(s) (45) 

This time the approximations ,.~n)(t) would contain effects of increasing 
order in the deviations from equilibrium as n increases. Moreover, strong 
renormalization effects can now appear through the coupling of first moments 
to the equilibrium part of the fluctuations. 

5. C O N C L U D I N G  C O M M E N T S  

We have shown above how the phenomenological Brownian motion 
theory can be extended in a straightforward manner to nonlinear processes 
given that the coupling between first moments and fluctuations can be satis- 
factorily accounted for. The existence of renormalized nonlinear transport 
equations of the proper form has been argued on the basis of a method of 
successive approximations, and a number of methods have been suggested 
that may under favorable conditions considerably simplify the inherent 
practical difficulties so that reasonably accurate fluctuation renormalization 
could be obtained. 

It should be emphasized that microscopic projection operator methods 
can be used to derive nonlinear Langevin equations and corresponding 
Fokker-Planck equations. In general, these equations will be non-Markovian, 
leading to non-Markovian character of the equations of motion for the 
cumulants (27a) and (27b). However, apart from a formal complication of 
the notation our analysis still applies, as is easily verified. 

In view of the well-known complications of nonlinear dynamics the very 
real need for nonlinear theories must be emphasized. As illustrated here by 
the Brownian motion of a Duffing oscillator in a fluid and by the Boltzmann 
equation of kinetic theory, certain problems naturally lead to nonlinear 
dynamics. Provided that only small deviations from equilibrium are con- 
sidered, it may still be possible to reformulate such a problem by methods of 
Zwanzig <~> and Mori ~4~ so that it becomes linear. But the nonlinear effects 
will then appear in the form of memory effects of significant magnitude and 
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duration hidden in the form of a propagator in the space of orthogonal 
variables. It seems unlikely that the nonlinear effects will be any easier to 
understand or to account for if they appear in this form. In fact, we believe 
the opposite will more often be the case. 

The nonlinear theory will, of course, be particularly manageable when 
the effects of the fluctuations can be neglected and the bare transport equa- 
tions used. However, many areas of current research seem certain to require 
the fluctuations to be accounted for. One such area is critical dynamics, where 
there is now widespread agreement that nonlinear mode-mode coupling 
theories are useful. The fact that the system studied is close to a phase transi- 
tion means that the fluctuations may be large in magnitude and consequently 
they may contribute significantly to the dynamics. 

The mode-mode coupling theory as formulated by Kawasaki is based 
on a generalized Brownian motion theory such as discussed here. Although 
at one point (1~ in his derivations Kawasaki suggests a procedure which 
would be the equivalent of the local equilibrium approximation described 
under approximation 2 above, the present theory ~5~ does not attempt to 
account for the effects of fluctuations by a systematic renormalization 
scheme. It is our view that this aspect of the mode-mode coupling theories 
requires further investigation and we believe the methods outlined above will 
be helpful in this regard. 

Finally, in order to place the fluctuation-renormalization schemes 
described above in a broader perspective it should be noted that the effects of 
fluctuations on nonlinear processes can, of course, be studied by obtaining 
the dynamics of a probability density rather than that of the first moments 
alone as given by the transport equation. Much work has been done along 
the former approach to the problem and we refer in particular to Van 
Kampen ~15~ and Lax, (16~ who have applied master equation and Fokker-  
Planck equation methods to the study of nonlinear processes. It should be 
clear that while the formal problem of fluctuation renormalization can be 
avoided in this way, one can do so only by drastically expanding the scope 
of the problem. Note that the probability density contains all of the informa- 
tion which is contained in the moments or cumulants to all orders. This is 
reflected in the fact that for a discrete set of variables the transport equations 
for a Markovian process are a set of ordinary differential equations while, for 
example, the corresponding Fokker-Planck equation is a partial differential 
equation in a space of as many dimensions as there are variables. 

Although the problem of dynamical coupling between first moments and 
fluctuations occurs in a number of applications of nonlinear statistical 
theories in the literature, it is rarely discussed in the terms we have used here. 
Typically the coupling is entirely neglected, which amounts to an assumption 
that the time-dependent cumulants of order two and higher are small enough 
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so that they will not significantly influence the dynamics of the first moments. 
This is the strongest form of what has been called the cumulant neglect 
hypothesis in statistical continuum theories. (1~> The assumption can be made 
progressively weaker by neglecting only cumulants of order n and higher 
where n is 3, 4, 5,.... In this case one then ends up with coupled nonlinear 
equations for the cumulants of order one through n - 1 and in order to 
obtain the transport equations for the first moments one must solve for the 
cumulants of order 2 through n - 1 in terms of the first moments and 
substitute into the equations for the first moments. Further discussion of this 
technique as applied to turbulence theory and a stochastic harmonic oscillator 
problem can be found in the work of Kraichnan (ls~ and Richardson, (1~ 
respectively. The same basic idea of imposing a cutoff on the cumulant 
expansion of higher moments has been drawn upon in applications of 
statistical methods to other physical problems (see Ref. 20 for a recent ex- 
ample). It should be noted that such a cutoff hypothesis can easily be imposed 
upon our coupled equations of motion (27b) for the infinite set of higher- 
order cumulants. The approximation procedures we have discussed here 
would then generally be simplified. However, the neglect ofcumulants beyond 
a given order is difficult to justify a priori. 
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